Измерение концентраций 1-циклогексилкарбонил-аминометил-2-хлорацетил-1,2,3,4-тетрагидроизохинолина методом тонкослойной хроматографии в воздухе рабочей зоны

Государственная система санитарно-эпидемиологического нормирования Российской Федерации

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение концентраций 1-циклогексилкарбонил-аминометил-2-хлорацетил-1,2,3,4-тетрагидроизохинолина методом тонкослойной хроматографии в воздухе рабочей зоны

МУК 4.1.0.403-96

Минздрав России

Москва · 1999

- 1. Методические указания разработаны с целью обеспечения контроля соответствия фактических концентраций вредных веществ их предельно допустимым концентрациям (ПДК) и ориентировочно безопасным уровням воздействия (ОБУВ) санитарно-гигиеническим нормативам и являются обязательными при осуществлении санитарного контроля.
- 2. Методические указания по измерению концентраций вредных веществ в воздухе рабочей зоны (выпуск 32) утверждены и. о. Председателя Госкомсанэпиднадзора России заместителем Главного государственного санитарного врача Российской Федерации 8 июня 1996 г.
- 3. Введены впервые.
- 4. Включенные в данный выпуск методики контроля разработаны и подготовлены в соответствии с требованиями ГОСТа 12.1.005-88 ССБТ «Воздух рабочей зоны. Общие санитарно-гигиенические требования», ГОСТа 12.1.016-79 ССБТ «Воздух рабочей зоны. Требования к методикам измерения концентраций вредных веществ», ГОСТа Р 1.5-92 п. 7.3, ГОСТа 8.101-90 «Государственная система обеспечения единства измерений. Методики выполнения измерений». Методические указания одобрены комиссией по государственному санитарно-эпидемиологическому нормированию Госкомсанэпиднадзора России и Проблемной комиссией «Научные основы гигиены труда и профпатологии».

Методические указания по измерению концентраций вредных веществ в воздухе рабочей зоны (выпуск 32) предназначены для центров Госсанэпиднадзора, санитарных лабораторий промышленных предприятий при осуществлении контроля за содержанием вредных веществ в воздухе рабочей зоны, а также заинтересованных министерств и ведомств.

Ответственный исполнитель: Г.А. Дьякова

Исполнители: Г.А. Дьякова, Л.Г. Макеева, Е.М. Малинина, С.М. Попова, Н.С. Горячев, М.И. Аржанова, Т.В. Рязанцева, Е.Н. Грицун.

УТВЕРЖДЕНО

И. о. Председателя Госкомсанэпиднадзора

России - заместителем Главного

государственного санитарного врача

Российской Федерации

Г.Г. Онищенко

8 июня 1996 г.

МУК 4.1.0.403-96

Дата введения: с момента утверждения

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение концентраций 1-циклогексилкарбонил-аминометил-2-хлорацетил-1,2,3,4-тетрагидроизохинолина методом тонкослойной хроматографии в воздухе рабочей зоны

М. м. 348,9

1-Циклогексилкарбониламинометил-2-хлорацетил-1,2,3,4-тетрагидроизохинолин - белый кристаллический порошок. Т _{пл.} -151 - 153 °C. Практически не растворятся в воде, плохо растворим в ацетоне, хорошо - в хлористом метилене и хлороформе.

В воздухе находится в виде паров и аэрозоля.

Обладает общетоксическим действием.

Рекомендуемый ОБУВ в воздухе - 1,0 мг/м 3 .

Характеристика метода

Метод основан на хроматографировании вещества в тонком слое силикагеля на пластинках «Силуфол» с последующим проявлением хроматограмм раствором о-толидина и денситометрировании окрашенных зон при 600 нм.

Отбор проб проводят с концентрированием на фильтр и в раствор этанола с хлороформом в соотношении 3 : 1.

Нижний предел измерения вещества в анализируемом объеме - 1,0 мкг.

Нижний предел измерения вещества в воздухе - 0,5 мг/м ³ (при отборе 20 л воздуха).

Диапазон измеряемых концентраций от 0,5 до 10,0 мг/м 3 .

Определению не мешают: дихлоргидрат 1-аминометил-1,2,3,4-тетрагидроизохинолин, *b*-фенилэтиламид хлоруксусной кислоты.

Суммарная погрешность измерения не превышает ±20 %.

Время выполнения измерения, включая отбор проб - 2 ч.

Приборы, аппаратура, посуда

Спектрофотометр «Спекорд М-40» с

приставкой для измерения отражения с

фотометрическим шаром; денситометр

«БИАН-170»

Аспирационное устройство «ЭА-2С-М» ТУ 2-80-86

Фильтродержатели ТУ 95.72.05-77

Хроматографическая камера для ТСХ

размером 10 ´ 20 см ГОСТ 23932-79Е

Пластинки для тонкослойной хроматографии

«Силуфол УФ-254» (ЧСФР)

Стаканы химические, вместимостью 25 мл ГОСТ 19908-80

Вакуумная установка

Пипетки, вместимостью 1, 2, 5, 10 мл ГОСТ 20292-74Е

Поглотительный сосуд Гернет

Реактивы, растворы, материалы

1-Циклогексилкарбониламинометил-

2-хлорацетил-1,2,3,4-тетрагидроизохинолин

Этиловый спиртГОСТ 5963-67ХпороформГОСТ 20015-67Метиловый спиртГОСТ 6995-77Кислота уксусная ледянаяГОСТ 61-75Кислота соляная, х. ч., 10 %-ный растворГОСТ 3118-77Калий марганцовокислый, х. ч., 1,5 %-ный растворГОСТ 20490-77Калий йодистый, ч. д. а.ГОСТ 4232-74

Подвижный растворитель: метиловый спирт (50 мл)

Проявляющий реактив

Получение паров хлора. На дно эксикатора, вместимостью 1,5 л наливают 50 мл 1,5 %-ного раствора калия перманганата и 50 мл 10 %-ного раствора соляной кислоты и осторожно перемешивают. Внутрь эксикатора кладут фарфоровую вкладку и закрывают пришлифованной крышкой. Смесь готовят за 60 мин до определения. Эксикатор должен находиться в вытяжном шкафу.

Раствор о-толидина. 160 мг о-толидина растворяют в 30 мл ледяной уксусной кислоты, доводят объем до 500 мл дистиллированной водой и добавляют 1,0 г йодистого калия. Хранят в посуде темного стекла. Реактив устойчив в течение 2-х недель.

Стандартный раствор № 1 с концентрацией 500 мкг/мл готовят растворением 0,05 г вещества в смеси этилового спирта с хпороформом (3 : 1) в мерной колбе, вместимостью 100 мл.

Стандартные растворы, содержащие 10 - 20 - 40 - 80 - 120 - 200 мкг/мл вещества, готовят соответствующим разбавлением смесью этанола с хлороформом (3 : 1) стандартного раствора № 1. Растворы устойчивы в течение 2-х недель при хранении в холодильнике.

Фильтры АФА-ХА-10 ТУ 95-743-80

Отбор проб воздуха

Воздух с объемным расходом 2 л/мин аспирируют через фильтр АФА-ХА-10 и поглотительный сосуд Гернет с 8 мл смеси этанола с хлороформом в соотношении 3 : 1. Отбор проб проводят при охлаждении (вода + лед). Для измерения 1/2 ПДК следует отобрать 20 л воздуха. Срок хранения проб - сутки в холодильнике.

Проведение измерения

Фильтр с отобранной пробой и раствор из поглотительного сосуда переносят в химический стакан, доводят смесью этанола с хлороформом (3:1) объем до 10 мл и оставляют на 15 мин, периодически помешивая стеклянной палочкой для лучшего растворения вещества. Степень десорбции с фильтра - 97 %.

Полученный раствор сливают в грушевидную колбу и упаривают досуха под вакуумом при температуре 30 - 40 °C. Сухой остаток растворяют в 1,0 мл смеси этанола с хлороформом в соотношении 3 : 1 и используют для анализа.

На линию старта пластинки «Силуфол» (от края 1,5 см) наносят с помощью микропипетки по 0,1 мл растворов пробы и шкалы стандартных растворов. Пластинку высушивают на воздухе в течение 3 мин, помещают в камеру для хроматографирования с метанолом и хроматографируют восходящим методом. После того как фронт растворителя пройдет до конца пластинки, ее вынимают из камеры и подсушивают на воздухе. Затем пластинку обрабатывают парами воды (держат 2 мин над кипящей водяной баней) и переносят в камеру с парами хлора, где выдерживают 15 мин. Для удаления паров хлора пластинку высушивают в потоке теплого воздуха под феном в течение 2 мин. Далее пластинку орошают раствором о-толидина (все операции осуществляют только в вытяжном шкафу). 1- циклогексилкарбонил-аминометил-2-хлорацетил-1,2,3,4-тетрагидроизохинолин проявляется в виде темно-синего пятна с величиной R_f = 0,73. Затем пластинку высушивают в токе теплого воздуха под феном и проводят количественное определение, используя денситометрирование.

Интенсивность окраски пятен вещества измеряют на спектрофотометре «Спекорд М-40» с приставкой для отражения с фотометрическим шаром при длине волны 600 нм по отношению к фону. В качестве фона используется участок исследуемой пластинки без вещества. Для каждой концентрации измеряют отражение (Т) в %. Оптическая плотность (Д) и отражение (Т) связаны между собой соотношением:

$$D = -lq T$$
, где

T - выражено в %, тогда

$$\mathcal{A} = \lg \frac{I}{T} \cdot 100 \text{ unu } \mathcal{A} = 2 - \lg T.$$

По средним результатам из 5-ти определений строят градуировочный график: на ось ординат наносят значение оптических плотностей градуировочных растворов, на ось абсцисс - соответствующие им величины содержания вещества в градуировочном растворе (в мкг).

Проверка градуировочного графика проводится не реже 1 раза в 3 месяца или в случае изменения условий анализа.

При использовании денситометра, содержание вещества (в мкг) в анализируемом объеме находят по градуировочному графику.

Расчет концентрации

Концентрацию вещества (C) в воздухе (мг/м 3) вычисляют по формуле:

$$C = \frac{a \cdot e}{6 \cdot V}$$
, sõe

- а масса вещества, найденная в пробе, мкг;
- в общий объем раствора пробы, мл:
- б объем раствора пробы, используемой для анализа, мл;
- V объем исследуемой пробы воздуха, приведенной к нормальным условиям, л (см. приложение 1).

Методические указания разработаны ВНЦ БАВ, г. Москва.

Приложение 1

Приведение объема воздуха к стандартным условиям (температура 20 °C и давление 760 мм рт. ст.) проводят по формуле:

$$V_{20} = \frac{V_t(273 + 20) \cdot P}{(273 + t) \cdot 101,33}, e \partial e$$

- V_t объем воздуха, отобранный для анализа, л;
- P барометрическое давление, кПа (101,33 кПа = 760 мм рт. ст.);
- t температура воздуха в месте отбора пробы, °С.

Для удобства расчета V_{20} следует пользоваться таблицей коэффициентов (приложение 2). Для приведения воздуха к стандартным условиям надо умножить V_t на соответствующий коэффициент.

Приложение 2

Коэффициенты для приведения объема воздуха к стандартным условиям

°C	Давление Р, кІ Іа/мм рт. ст.									
C	97,33/730	97,86/734	98,4/738	98,93/742	99,46/746	100/750	100,53/754	101,06/758	101,33/760	101,86/764
-30	1,1582	1,1646	1,1709	1,1772	1,1836	1,1899	1,1963	1,2026	1,2038	1,2122
-26	1,1393	1,1456	1,1519	1,1581	1,1644	1,1705	1,1768	1,1831	1,1862	1,1925
-22	1,1212	1,1274	1,1336	1,1396	1,1458	1,1519	1,1581	1,1643	1,1673	1,1735
-18	1,1036	1,1097	1,1158	1,1218	1,1278	1,1338	1,1399	1,1460	1,1490	1,1551
-14	1,0866	1,0926	1,0986	1,1045	1,1105	1,1164	1,1224	1,1284	1,1313	1,1373
-10	1,0701	1,0760	1,0819	1,0877	1,0986	1,0994	1,1053	1,1112	1,1141	1,1200
-6	1,0540	1,0599	1,0657	1,0714	1,0772	1,0829	1,0887	1,0945	1,0974	1,1032
-2	1,0385	1,0442	1,0499	1,0556	1,0613	1,0669	1,0726	1,0784	1,0812	1,0869

0	1,0309	1,0366	1,0423	1,0477	1,0535	1,0591	1,0648	1,0705	1,0733	1,0789
+2	1,0234	1,0291	1,0347	1,0402	1,0459	1,0514	1,0571	1,0627	1,0655	1,0712
+6	1,0087	1,0143	1,0198	1,0253	1,0309	1,0363	1,0419	1,0475	1,0502	1,0557
+10	0,9944	0,9999	1,0054	1,0108	1,0162	1,0216	1,0272	1,0326	1,0353	1,0407
+14	0,9806	0,9860	0,9914	0,9967	1,0027	1,0074	1,0128	1,0183	1,0209	1,0263
+18	0,9671	0,9725	0,9778	0,9830	0,9884	0,9936	0,9989	1,0043	1,0069	1,0122
+20	0,9605	0,9658	0,9711	0,9783	0,9816	0,9868	0,9921	0,9974	1,0000	1,0053
+22	0,9539	0,9592	0,9645	0,9696	0,9749	0,9800	0,9853	0,9906	0,9932	0,9985
+24	0,9475	0,9527	0,9579	0,9631	0,9683	0,9735	0,9787	0,9839	0,9865	0,9917
+26	0,9412	0,9464	0,9516	0,9566	0,9618	0,9669	0,9721	0,9773	0,9799	0,9851
+28	0,9349	0,9401	0,9453	0,9503	0,9555	0,9605	0,9657	0,9708	0,9734	0,9785
+30	0,9288	0,9339	0,9391	0,9440	0,9432	0,9542	0,9594	0,9645	0,9670	0,9723
+34	0,9167	0,9218	0,9268	0,9318	0,9368	0,9418	0,9468	0,9519	0,9544	0,9595
+38	0,9049	0,9099	0,9149	0,9199	0,9248	0,9297	0,9347	0,9397	0,9421	0,9471

Приложение 3

Вещества, определяемые по ранее утвержденным методическим указаниям по измерению концентраций вредных веществ в воздухе рабочей зоны

Определяемое вещество

Аммония полифосфат

Алюминия сульфат

2,5-бифенилилендиацетат

Виндидат

Диэтилентриамин

Дубитель хромовый

Дуниты

Кобазол

Кремния карбид

Полибутилентерефталат

Полимер кубовых остатков ректификации стирола (термополимер «КОРС»)
В-фенилэтиламидхлоруксусная кислота (контроль по бензолу)

Фториды редкоземельных металлов

Хлопковая мука

Целлюлоза микрокристаллическая

Ссылка на источник

Методические указания на фотометрическое определение аммиака в воздухе, в. 1 - 5. - M., 1981. - C. 58

Методические указания на фотометрическое определение алюминия, окиси алюминия и алюмоникелевого катализатора в воздухе, в. 1 - 5. - М., 1981. - С. 3

Методические указания на гравиметрическое определение пыли в воздухе рабочей зоны и в системах вентиляционных установок, в. 1 - 5. - М., 1981. - С. 235

Методические указания по измерению концентраций сульфата калия, калийной магнезии и хлорида калия в воздухе рабочей зоны методом пламенной фотометрии, в. 22. - М., 1988. - С. 182

Методические указания по фотометрическому измерению концентраций третичных жирных аминов и аминоспиртов в воздухе рабочей зоны, в. 19. - М., 1984. - С. 137

Методические указания на фотометрическое определение окиси хрома в воздухе рабочей зоны, в. 14. - М., 1979. - С. 108

Методические указания на гравиметрическое определение пыли в воздухе рабочей зоны и в системах вентиляционных установок, в. 1 - 5, - М., 1981, - С. 235

Методические указания по фотометрическому определению кобальта, в. 1 - 5. - М., 1981. - С.

Методические указания на гравиметрическое определение пыли в воздухе рабочей зоны и в системах вентиляционных установок, в. 1 - 5. - М., 1981. - С. 235

Методические указания на гравиметрическое определение пыли в воздухе рабочей зоны и в системах вентиляционных установок, в. 1 - 5. - М., 1981. - С. 235

Методические указания на гравиметрическое определение пыли в воздухе рабочей зоны и в системах вентиляционных установок, в. 1 - 5. - М., 1981. - С. 235

Методические указания по газохроматографическому измерению ацетона, дихлорметана, дихлорэтана, трихлорэтилена, бензола в воздухе рабочей зоны, в. 9. - М., 1986. - С. 23

Методические указания по ионометрическому измерению концентраций солей

фтористоводородной кислоты, в. 21. - М., 1986. - С. 269

Методические указания по фотометрическому определению БВК в воздухе рабочей зоны, в. 18. - М., 1983. - С. 139

Методические указания на гравиметрическое определение пыли в воздухе рабочей зоны и в системах вентиляционных установок, в. 1 - 5. - М., 1981. - С. 235

Приложение 4

Ловушка-концентратор