ВЕДОМСТВЕННЫЕ ПРОИЗВОДСТВЕННЫЕ НОРМЫ РАСХОДА МАТЕРИАЛОВ НА МОНТАЖНЫЕ И СПЕЦИАЛЬНЫЕ СТРОИТЕЛЬНЫЕ РАБОТЫ

МОНТАЖ КРИОГЕННОГО ОБОРУДОВАНИЯ

ВПНРМ 493-89

Минмонтажспецстрой СССР

МИНИСТЕРСТВО МОНТАЖНЫХ И СПЕЦИАЛЬНЫХ СТРОИТЕЛЬНЫХ РАБОТ СССР

Москва-1989

Разработаны ГПИ Гипрометаллургмонтаж (Г.Д. Дудко, В.С. Воронин, Г.П. Щукина) под методическим руководством ГПИ Проектпромвентиляция (Ю.М. Копченов, Е.П. Еременко).

Подготовлены к утверждению и внесены СО Металлургмонтаж.

Замечания и предложения направлять по адресу: 105264, Москва, Верхняя Первомайская ул., 43/24 ГПИ Гипрометаллургмонтаж, копию - 125315, Москва, 2-й Амбулаторный пр., 10, ГПИ Проектпромвентиляция.

Министерство монтажных и специальных строительных работ СССР (Минмонтажспецстрой СССР) Ведомственные производственные нормы расхода материалов на монтажные и специальные строительные работы

Монтаж криогенного оборудования

ВПНРМ 493-89
Минмонтажспецстрой СССР
Дополнения к
ВПНРМ 493-87
Минмонтажспецстрой СССР

ОБЩАЯ ЧАСТЬ

- 1. Ведомственные производственные нормы расхода материалов (ВПНЖ) разработаны в соответствии с комплексной программой "Экономия материальных и топливно-экономических ресурсов по Минмонтажспецстрою СССР на 1986-1990 гг. и на период до 2000 года", утвержденной постановлением коллегии от 10 октября 1986 г. № 34-4, приложение "План разработки в XII пятилетке технико-экономических норм и нормативов на производство СМР и промышленной продукции в системе Минмонтажспецстроя СССР". Нормы разработаны с учетом применения материалов, качество которых соответствует требованиям ГОСТ и технических условий.
- 2. Настоящие ВПНРМ предназначены для определения нормативного количества материалов на стадии подготовки строительно-монтажного производства при организации производственно-технологической комплектации объектов и контроля за расходом материалов при их списании.
- 3. Ведомственные производственные нормы разработаны на монтаж криогенного оборудования (оборудование для получения и хранения криогенных продуктов, трубопроводы для транспортирования этих продуктов).
- 4. Нормами учтены чистая норма (расход материалов на единицу продукции без учета отходов и потерь, возникающих при хранении, переработке и транспортировании материалов, изделий, полуфабрикатов) и трудноустранимые отходы и потери, образующиеся при монтажных работах.
- 5. Нормами предусмотрены следующие условия:

фундаменты и опорные конструкции должны быть полностью подготовлены к монтажу и соответствовать техническим условиям и чертежам;

оборудование, подлежащее монтажу, должно поступать на монтажную площадку комплектно, в исправном состоянии, прошедшим контрольную сборку и обкатку на заводе-изготовителе.

Качество выполненных работ должно соответствовать техническим условиям на производство и приемку монтажных работ.

Настоящий выпуск содержит дополнения и изменения к ВПНРМ 493-87 Минмонтажспецстроя СССР.

Внесены СО Металлургмонтаж	Утверждены Минмонтажспецстроем СССР	Срок введения в действие
внесены со металлургмонтаж	12 июля 1989 г.	1 января 1990 г.

Нормы расхода вспомогательных материалов на вакуумирование криогенных трубопроводов разработаны впервые и учитывают дополнительные работы (монтаж, сварка, контроль и испытание криогенного оборудования).

С введением в действие настоящих норм утрачивают силу нормы ВПНРМ 493-87, указанные в таблице.

Номер пункта	Наименование пункта	Шифр нормы	Материал
3.1	Трубопроводы обвязочные диаметром 15/100 - 32/100	01.03	Вольфрам
3.2	То же диаметром 50/150 - 100/200	01.03	2
3.3	То же диаметром 150/250 - 200/300	01.03	2
3.4	То же диаметром 250/350 - 300/400	01.03	2
3.5	То же диаметром 400/500	01.03	2
		01.11	Стекло жидкое
3.6	То же диаметром 500/600	01.03	Вольфрам
		01.06	Пленка полиэтиленовая
		01.11	Стекло жидкое

4.1	Компрессоры и насосы	01.18 Паста	•
		01.21 Пороц	ок графитовый
		01.24 Салф	етки обтирочные
5.1	Воздухоразделительная установка	01.06 Лесом	атериалы
6.1	Резервуар РС-1400	01.03 Кисло	род
		01.08 Пропа	н-бутан
		01.11 Спирт	этиловый
7.1	Барокамера	01.07 Кисло	род
		01.11 Пропа	н-бутан
		01.17 Углеки	іслый газ
		01.23 Элект	роэнергия
9.1	Сферический резервуар РС-1400	01.04 Гелий	

МОНТАЖ И ВАКУУМИРОВАНИЕ КРИОГЕННОГО ОБОРУДОВАНИЯ

Раздел 1. Вакуумирование криогенных трубопроводов

Состав работы

Испытание внутренней трубы методом опрессовки заполнение гелиево-воздушной смесью, поиск течей течеискателем ПТИ10, устранение дефектов пролив жидким азотом сварных стыков, последующие испытания течеискателем.

Испытание кожуха криогенного трубопровода методом опрессовки, устранение дефектов, откачка теплоизоляционной полости, контроль герметичности методом обдува сварных швов гелием, устранение дефектов, течей, последующие испытания, регенерация адсорбента. Контроль герметичности кожуха манометрическим методом при рабочем давлении во внутренней трубе.

Дефект устраняют согласно ТУ, а затем снова проверяют. Затем в пространство между внутренним трубопроводом и кожухом подают азот под давлением 5-7 МПа (0,5-0,7 кгс/см²) и производят обмыливание сварных швов и соединений. После устранения дефектов сварные швы и соединения обдувают гелием и контролируют течеискателем. Затем производят регенерацию адсорбционной секции путем продувки змеевика секции воздухом температурой 180-200 °С в течение 72 ч с одновременным вакуумированием вакуумной полости. Через каждые 24 ч необходимо менять местами вход и выход греющего газа. Затем на полностью остывшем адсорбенте (не менее 48 ч после окончания регенерации) определяют с помощью вакуумметра суммарную негерметичность кожуха и внутренней трубы на каждом вакуумном участке трубопровода.

Испытание кожуха криогенного трубопровода включает в себя:

- а) проверку плотности кожуха методом опрессовки;
- б) откачку теплоизоляционной полости;
- в) контроль герметичности способом обдува сварных швов кожуха гелием и устранение течей;
- г) регенерацию адсорбента криосорбционного масла адсорбционной секции;
- д) контроль герметичности кожуха манометрическим методом при рабочем давлении во внутренней трубе.

§ 1. Трубопроводы диаметром 15/100 - 32/100 мм

На 100 м

Материал	Единица измерения	Норма расхода	Код строки
Бязь	_M 2	2,8	01
Гелий	м3	4,42	02
Жидкий азот	Т	1,079	03
Киперная лента	М	0,7	04
Липкая лента	М	241	05
Масло ВМ-1	КГ	0,8	06
Масло ВМ-4	КГ	1,2	07
Резина вакуумная	КГ	0,35	08
Спирт этиловый	КГ	2,4	09
Шланг резиновый	КГ	0,4	10
Электроэнергия	кВт×ч	1880,2	11
Код графы		01	

§ 2. Трубопроводы диаметром 50/150 - 100/200 мм

На 100 м

Материал	Единица измерения	Норма расхода	Код строки
Бязь	м2	4,35	01
Гелий	м3	10,43	02
Жидкий азот	Т	1,162	03
Киперная лента	М	0,8	04
Липкая лента	М	498	05
Масло BM-1	КГ	0,975	06
Масло ВМ-4	КГ	1,4	07
Резина вакуумная	КГ	0,4	08
Спирт этиловый	кг	3,05	09
Шланг резиновый	кг	0,5	10

Электроэнергия	кВт×ч	2275,2	11
Код графы		01	

§ 3. Трубопроводы диаметром 150/250 - 200/300 мм

На 100 м

Материал	Единица измерения	Норма расхода	Код строки
Бязь	м2	4,95	01
Гелий	м3	24,1	02
Жидкий азот	Т	1,245	03
Киперная лента	М	1,0	04
Липкая лента	М	575	05
Масло ВМ-1	КГ	1,29	06
Масло ВМ-4	КГ	1,81	07
Резина вакуумная	КГ	0,44	08
Спирт этиловый	КГ	4,12	09
Шланг резиновый	КГ	0,7	10
Электроэнергия	кВт×ч	2957,6	11
Код графы		01	

§ 4. Трубопроводы диаметром 250/350 - 300/400 мм

На 100 м

Материал	Единица измерения	Норма расхода	Код строки
Бязь	м2	6,2	01
Гелий	м3	41,44	02
Жидкий азот	Т	1,328	03
Киперная лента	М	1,2	04
Липкая лента	М	665	05
Масло ВМ-1	КГ	1,6	06
Масло ВМ-4	КГ	2,48	07
Резина вакуумная	КГ	0,58	08
Спирт этиловый	КГ	5,53	09
Шланг резиновый	КГ	0,9	10
Электроэнергия	кВт×ч	3640,3	11
Код графы		01	

§ 5. Трубопроводы диаметром 400/500 мм

На 100 м

Материал	Единица измерения	Норма расхода	Код строки
Бязь	_M 2	7,3	01
Гелий	м3	85,9	02
Жидкий азот	Т	1,41	03
Киперная лента	М	703	04
Липкая лента	М	1,5	05
Масло ВМ-1	КГ	1,95	06
Масло ВМ-4	КГ	2,85	07
Резина вакуумная	КГ	0,65	08
Спирт этиловый	КГ	6,16	09
Шланг резиновый	КГ	1,3	10
Электроэнергия	кВт×ч	4550,4	11
Код графы		01	•

§ 6. Трубопроводы диаметром 500/650 мм

На 100 мм

Материал	Единица измерения	Норма расхода	Код строки
Бязь	м2	7,3	01
Гелий	м3	133,35	02
Жидкий азот	Т	1,496	03
Киперная лента	М	1,5	04
Липкая лента	М	1037	05
Масло ВМ-1	КГ	2,3	06
Масло ВМ-4	КГ	3,36	07
Резина вакуумная	КГ	0,78	08
Спирт этиловый	КГ	6,16	09
Шланг резиновый	КГ	1,66	10
Электроэнергия	кВт×ч	5733,1	11
Код графы		01	

Материал	Единица измерения	Норма расхода	Код строки
Аргон	м3	2300	01
Бязь	м2	246,5	02
Вольфрам-3	КГ	3,5	03
Вольфрам-4	КГ	3,5	04
Кислород	м3	210	05
Лесоматериалы	м3	1,0	06
Пленка рентгеновская	пачка	25	07
Проволока сварочная диаметром, мм:			
2	КГ	250	08
3	КГ	600	09
4	КГ	1200	10
Пропан	КГ	145	11
Проявитель	л	150	12
Синтанол	КГ	50	13
Стекло натриевое	КГ	18	14
Спирт этиловый	КГ	512,5	15
Фиксаж	л	175	16
Флюс АНК-45	КГ	850	17
Флюс АН-26С	КГ	250	18
Электроды АНВ	КГ	570	19
Электроды ОЗП	КГ	5500	20
Электроэнергия	кВт×ч	170050	21
Код графы		01	

РАЗДЕЛ 2. МОНТАЖ ВОЗДУХОРАЗДЕЛИТЕЛЬНЫХ УСТАНОВОК

§ 1. Воздухоразделительная установка

Состав работы

Подготовка оборудования к монтажу, укрупнение металлоконструкций и кожуха блока, монтаж арматуры и узлов трубопроводов, сварка и контроль сварки, испытание системы на падение давления, устранение дефектов, последующие испытания, сдача под изоляцию, изоляция воздухоразделительной установки, отделка кожуха блока, монтаж турбодетандеров и насосов жидкого кислорода.

На 100 руб. СМР

Материал	Единица измерения	Норма расхода	Код строки
Метизы	КГ	1,07	01
Лесоматериал	м3	0,035	02
Код графы		01	

§ 2. Монтаж сферического резервуара РС-1400

Состав работы

Укрупнение листков сосуда в трехлепистковые блоки, сборка и сварка сосуда резервуара. Подъем и установка в проектное положение. Сборка и сварка кожуха резервуара.

Резервуар

Материал	Единица измерения	Норма расхода	Код строки
Аргон	м3	0,2	01
Бязь	м2	173,26	02
Кислород	м3	210	03
Пропан-бутан	КГ	145	04
Пиломатериал	м3	1,0	05
Проволока сварочная 08Г2С	КГ	1450	06
Спирт этиловый	КГ	268	07
Код графы		01	

§ 3. Монтаж барокамер

Состав работы

Подготовительные работы, монтаж роликовых опор для сварки обечаек, сборка и подготовка обечаек барокамеры к автоматической сварке, сварка и контроль сварки, монтаж металлоконструкций, установка в проектное положение собранной камеры, крышки, дополнительного оборудования, вакуумных насосов, криогенных экранов и арматуры. Проведение вакуумных испытаний.

Материал	Единица измерения	Норма расхода	Код строки
Кислород	м3	0,9	01
Пропан-бутан	КГ	0,65	02
Электроэнергия	кВт×ч	100	03
Код графы		01	

§ 4. Испытание оборудования сферического резервуара PC-1400

Состав работы

Чистка, обезжиривание, испытание сосуда резервуара. Чистка, обезжиривание вакуумной полости резервуара. Вакуумирование и изоляция резервуара. Вакуумные испытания резервуара.

Резервуар

Материал	Единица измерения	Норма расхода	Код строки
Вода	м3	7906	01
Гелий	м3	780	02
Код графы		01	

РАЗДЕЛ 3. МОНТАЖ ОБВЯЗОЧНЫХ КРИОГЕННЫХ ТРУБОПРОВОДОВ

§ 1. Обвязочные криогенные трубопроводы

Состав работы

Проверить трубопроводы, арматуру и т.д. на предмет чистоты поверхностей, соприкасающихся с продуктом и обращенных в вакуумные полости. Перед установкой в трубопровод поджать компенсаторы, учитывая утяжку труб при сварке. Надвинуть на внешние трубы (кожухи) соседних трубопроводов отдельные кольцевые детали и узлы: компенсирующие муфты, переходные муфты, компенсаторы по кожуху. Установить на угловые компенсаторы приспособления для фиксации компенсаторов, произвести проверку поворота угловых компенсаторов на максимальный угол. Выставить криогенные трубопровода с обеспечением их соосности и прямолинейности, а также заданного уклона, закрепить их на опорах и прикрепить опоры к закладным деталям путем прихватки. Подготовить к сварке, состыковать и прихватить торцы внутренних труб криогенного трубопровода между собой, с арматурой и компенсаторами. Сварить стыки криогенных трубопроводов.

На 100 ч

Материал	Единица измерения	Норма расхода	Код строки
Для трубопроводов диаметром 15/100 - 32/100 мм			
Вольфрам	КГ	0,127	01
Для трубопроводов диаметром 50/150 - 100/200 мм			
Вольфрам	КГ	0,335	02
Для трубопроводов диаметром 150/250 - 200/300 мм			
Вольфрам	КГ	0,574	03
Для трубопроводов диаметром 250/350 - 300/400 мм			
Вольфрам	КГ	0,777	04
Для трубопроводов диаметром 400/500 мм			
Вольфрам	КГ	1,968	05
Стекло жидкое	КГ	1,5	06
Для трубопроводов диаметром 500/650 мм			
Вольфрам	КГ	3,42	07
Пленка полиэтиленовая	м2	7,24	80
Стекло жидкое	КГ	1,9	09
Код графы		01	

Раздел 4. Монтаж компрессорного оборудования

§ 1. Компрессоры и насосы

Состав работы

Компрессоры - проверка прилегания и правильности установки фундаментных рам, установка цилиндров компрессора на фундамент и выверка, установка анкерных болтов и плит, проверка прилегания крышки компрессора, проверка и регулировка зазоров и натягов, проверка прилегания сопрягаемых поверхностей подшипников, сборка компрессора.

Насосы - установка на подрамник и закрепление (фланец рамы насоса закрепляют на фланце кожуха блока разделения). Проверка плотности присоединения к насосу на максимальное рабочее давление. Устранение выявленных дефектов. Проверка плотности цилиндровой группы насоса с устранением течи.

На 100 т

Материал	Единица измерения	Норма расхода	Код строки
Бакелитовый лак	КГ	0,04	01
Мазь ртутно-графитовая	КГ	0,007	02
Паста	КГ	0,008	03
Порошок графитовый	КГ	0,004	04
Код графы		01	

СОДЕРЖАНИЕ

Общая часть. 1

Монтаж и вакуумирование криогенного оборудования. 2

Раздел 1. Вакуумирование криогенных трубопроводов. 2

- § 1. Трубопроводы диаметром 15/100 32/100 мм.. 3
- § 2. Трубопроводы диаметром 50/150 100/200 мм.. 3
- § 3. Трубопроводы диаметром 150/250 200/300 мм.. 3
- § 4. Трубопроводы диаметром 250/350 300/400 мм.. 4
- § 5. Трубопроводы диаметром 400/500 мм.. 4
- § 6. Трубопроводы диаметром 500/650 мм.. 4
- § 7. Резервуар РСВ-1400. 5

Раздел 2. Монтаж воздухоразделительных установок. 5

- § 1. Воздухоразделительная установка. 5
- § 2. Монтаж сферического резервуара РС-1400. 5
- § 3. Монтаж барокамер. 6
- § 4. Испытание оборудования сферического резервуара РС-1400. 6

Раздел 3. Монтаж обвязочных криогенных трубопроводов. 6

§ 1. Обвязочные криогенные трубопроводы.. 6

Раздел 4. Монтаж компрессорного оборудования. 7

§ 1. Компрессоры и насосы.. 7