Государственное санитарно-эпидемиологическое нормирование Российской Федерации

УТВЕРЖДЕНО

Председатель Госкомсанэпиднадзора России

Главный государственный санитарный врач

Российской Федерации

Е.Н. Беляев

8 июня 1996 г.

МУК 4.1.0.422-96

Дата введения: с момента утверждения

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Газохроматографическое измерение концентраций диглицидилового эфира 1,4-бутандиола в воздухе рабочей зоны

М. м. 202,25

Диглицидиловый эфир 1,4-бутандиола (ДГЭБД) С $_{10}$ Н $_{18}$ О $_{4}$ - жидкость слегка желтоватого цвета со слабым специфическим запахом. Т $_{\text{кип}}$ - 150 - 160 °C при давлении 11 мм рт. ст., не растворима в воде, хорошо растворима в толуоле, ацетоне, уксусной кислоте, плотность при 20 °C - 1,049 г/см 2 .

В воздухе находится в виде аэрозоля и паров.

Продукт является умеренно токсичным веществом (относится к III классу опасности), обладает слабым кумулятивным и резорбтивным эффектом, проявляет слабое сенсибилизирующее действие.

ПДК в воздухе - 2 мг/м^3 .

Характеристика метода

Метод основан на использовании газожидкостной хроматографии с применением пламенно-ионизационного детектора.

Отбор проб производится с концентрированием на фильтр и в толуол.

Нижний предел измерения содержания в хроматографируемом объеме - 0,05 мкг.

Нижний предел измерения концентрации в воздухе - 0,5 мг/м ³ (при отборе 10 л воздуха).

Диапазон измеряемых концентраций в воздухе - от 0,5 до 5 мг/м 3.

Измерению не мешают толуол, эпихлоргидрин.

Суммарная погрешность измерения не превышает ± 25 %.

Время выполнения измерения, включая отбор проб, - 2 ч.

Приборы, аппаратура, посуда

Хроматограф с пламенно-ионизационным

детектором

Хроматографическая колонка

из нержавеющей стали, длиной 1 м

и внутренним диаметром 0,3 см

Аспирационное устройство

Поглотительные приборы

с пористой пластинкой № 2

 Колбы мерные, вместимостью 25 и 100 мл
 ГОСТ 1770-74

 Пипетки, вместимостью 1, 2 и 5 мл
 ГОСТ 20292-74

Микрошприц МШ-10 ГОСТ 8043-74

Фильтродержатели ТУ 9572-77

Линейка измерительная ГОСТ 427-75

Лупа измерительная ГОСТ 8309-75

Фарфоровые чашки, вместимостью 25 мл ГОСТ 9147-80

Реактивы, растворы, материалы

Диглицидиловый эфир 1,4-бутандиола, техн. ТУ 2.024.0224533-027-90

 Толуол
 ГОСТ 5789-78

 Хлороформ
 ГОСТ 215-74

Стандартный раствор ДГЭБД № 1 готовят в мерной колбе, вместимостью 25 мл. Взвешивают колбу с 10 - 15 мл хлороформа, вносят 2 - 3 капли ДГЭБД, колбу закрывают пробкой и снова взвешивают. По разности взвешиваний определяют навеску. Раствор в колбе доводят до метки хлороформом и рассчитывают содержание ДГЭБД в 1 мл раствора.

Стандартные растворы с концентрацией от 50 до 500 мкг/мл готовят соответствующим разбавлением стандартного раствора № 1 хлороформом.

Растворы устойчивы в течение 5 суток при хранении в холодильнике.

Фильтры бумажные «синяя лента» ТУ 6-09-1678-77

Твердый носитель - хроматон

N-AW DMCS c 5 % SE-30,

фракция 0,16 - 0,20 мм

Газообразные (в баллонах в редукторами):

азотГОСТ 9293-74водородГОСТ 3022-70воздухГОСТ 11882-73

Отбор пробы воздуха

Для определения аэрозоля ДГЭБД воздух с объемным расходом 5 л/мин аспирируют через фильтр, помещенный в фильтродержатель. Для определения паров ДГЭБД воздух с объемным расходом 0,7 л/мин аспирируют через систему фильтр-поглотительный раствор с 5 мл толуола при охлаждении. Анализу подвергают лишь содержимое поглотительной прибора. Для измерения 1/2 ОБУВ следует отобрать 5 л воздуха. Срок хранения отобранных проб - 7 суток при температуре 4 °C.

Подготовка к измерению

Приготовление хроматографической колонки.

Хроматографическую колонку заполняют готовой насадкой - хроматон N-AW DMCS с 5 %-ным SE-30. Температуру термостата постепенно повышают от 50 до $250\,^{\circ}$ C со скоростью $1\,^{\circ}$ C/мин. Колонку кондиционируют 18 ч в термостате хроматографа при отключенном детекторе. Скорость газа-носителя (азота) - $30\,$ л/мин. После этого колонку подсоединяют к детектору и снижают температуру до рабочей.

Для количественного определения используют метод абсолютной калибровки. Для этого в испаритель хроматографа вводят по 5 мкл градуировочных растворов ДГЭБД с содержанием от 0,05 до 0,5 мкг вещества. По полученным результатам строят градуировочный график зависимости площади пиков (см 2) от содержания вещества (мкг), провод 5 параллельных определений.

Условия хроматографирования градуировочных растворов и анализируемых проб:

температура колонки 200 °C; 275 °C: температура испарителя скорость потока газа-носителя (азота) 30 мл/мин; 30 мл/мин: скорость потока водорода 300 мл/мин; скорость потока воздуха скорость движения диаграммной ленты 200 см/ч; объем вводимой пробы 5 мкл; время удерживания ДГЭБД 2 мин 30 с.

Проведение измерения

Фильтр с пробой аэрозоля помещают в бюкс или пенициллиновый флакон, заливают 5 мл хлороформа и выдерживают 20 мин при комнатной температуре. Экстракт переносят в фарфоровую чашку и концентрируют пробу путем упаривания на воздухе досуха. Сухой остаток растворяют в 0,5 мл хлороформа.

Для определения паров содержимое поглотителя переносят в выпарительную фарфоровую чашку, упаривают на водяной бане при температуре 40 - 50 °C примерно до объема 0,5 мл. Остаток переносят в пробирку с пришлифованной пробкой и упаривают досуха. Сухой остаток растворяют в 0,5 мл хлороформа. Далее 5 мкл этого раствора вводят в хроматограф через самоуплотняющуюся мембрану в испарителе. Затем снимают хроматограмму, вычисляют площадь пика и по градуировочному графику находят количество определяемого компонента.

Концентрацию вещества (C) в воздухе (мг/м 3) вычисляют по формуле:

$$C = \frac{a \cdot e}{6 \cdot V}$$
,где

a - количество ДГЭБД, найденное в анализируемом объеме раствора по градуировочному графику, мкг;

в - общий объем пробы, мл;

 δ - объем пробы, взятой для анализа, мл;

V - объем воздуха, отобранного для анализа и приведенного к стандартным условиям, л (см. приложение 1).

Методические указания разработаны НИИ медицины труда РАМН, г. Москва.

Приложение 1

Приведение объема воздуха к стандартным условиям (температура 20 °С и давление 760 мм рт. ст.)

проводят по формуле

$$V_{20} = \frac{V + (273 + 20) \cdot P}{(273 + t) \cdot 101,33}$$
,где

 V_t - объем воздуха, отобранный для анализа, л;

P - барометрическое давление, кПа (101,33 кПа = 760 мм рт. ст.);

t - температура воздуха в месте отбора пробы, °С.

Для удобства расчета V_{20} следует пользоваться таблицей коэффициентов (приложение 2). Для приведения воздуха к стандартным условиям надо умножить V_t на соответствующий коэффициент.

Приложение 2

Коэффициенты для приведения объема воздуха к стандартным условиям

Давление Р, кПа/мм рт. ст.										
°C	97,33/730	97,86/734	98,4/738	98,93/742	99,46/746	100/750	100,53/754	101,06/758	101,33/760	101,86/764
-30	1,1582	1,1646	1,1709	1,1772	1,1836	1,1899	1,1963	1,2026	1,2058	1,2122
-26	1,1393	1,1456	1,1519	1,1581	1,1644	1,1705	1,1768	1,1831	1,1862	1,1925
-22	1,1212	1,1274	1,1336	1,1396	1,1458	1,1519	1,1581	1,1643	1,1673	1,1735
-18	1,1036	1,1097	1,1158	1,1218	1,1278	1,1338	1,1399	1,1460	1,1490	1,1551
-14	1,0866	1,0926	1,0986	1,1045	1,1105	1,1164	1,1224	1,1284	1,1313	1,1373
-10	1,0701	1,0760	1,0819	1,0877	1,0986	1,0994	1,1053	1,1112	1,1141	1,1200
-6	1,0540	1,0599	1,0657	1,0714	1,0772	1,0829	1,0887	1,0945	1,0974	1,1032
-2	1,0385	1,0442	1,0499	1,0556	1,0613	1,0669	1,0726	1,0784	1,0812	1,0869
0	1,0309	1,0366	1,0423	1,0477	1,0535	1,0591	1,0648	1,0705	1,0733	1,0789
+2	1,0234	1,0291	1,0347	1,0402	1,0459	1,0514	1,0571	1,0627	1,0655	1,0712
+6	1,0087	1,0143	0,0198	1,0253	1,0309	1,0363	1,0419	1,0475	1,0502	1,0557
+10	0,9944	0,9999	0,0054	1,0108	1,0162	1,0216	1,0272	1,0326	1,0353	1,0407
+14	0,9806	0,9860	0,9914	0,9967	1,0027	1,0074	1,0128	1,0183	1,0209	1,0263
+18	0,9671	0,9725	0,9778	0,9830	0,9884	0,9936	1,9989	1,0043	1,0069	1,0122
+20	0,9605	0,9658	0,9711	0,9783	0,9816	0,9868	0,9921	0,9974	1,0000	1,0053
+22	0,9539	0,9592	0,9645	0,9696	0,9749	0,9800	0,9853	0,9906	0,9932	1,9985
+24	0,9475	0,9527	0,9579	0,9631	0,9683	0,9735	0,9787	0,9839	0,9865	1,9917
+26	0,9412	0,9464	0,9516	0,9566	0,9618	0,9669	0,9721	0,9773	0,9799	1,9851
+28	0,9349	0,9401	0,9453	0,9503	0,9555	0,9605	0,9657	0,9708	0,9734	1,9785
+30	0,9288	0,9339	0,9391	0,9440	0,9432	0,9542	0,9594	0,9645	0,9670	0,9723
+34	0,9167	0,9218	0,9268	0,9318	0,9368	0,9418	0,9468	0,9519	0,9544	0,9595
+38	0,9049	0,9099	0,9149	0,9199	0,9248	0,9297	0,9347	0,9397	0,9421	0,9471

Приложение 3

Рис. 1

Ловушка-концентратор.

Общий вид.

Рис. 2

Ловушка-концентратор.

Приложение 4

В

Вещества, определяемые по ранее утвержденным методическим указаниям								
Название вещества 1. Аммоний винно-кислый кислый	Методические указания Методические указания на фотометрическое определение аммиака: Сб. МУ в. 1 - 5 М., 1981 58 с.							
Аммоний винно-кислый	К = 9,82 Методические указания на фотометрическое определение аммиака: Сб. МУ в. 1 - 5 М., 1981 - 58 с.							
 Калий винно-кислый Калий виннокислый кислый 	К = 5,41 Методические указания по измерению концентраций сульфата калия, калийной магнезии и хлорида калия в воздухе рабочей зоны: Сб. МУ, в. 22 М., 1988 - 182 с.							
3. Калий сурьмоксид винно-кислый	К = 2,9 и 4,82 Методические указания по полярографическому измерению концентраций сурьмы в воздухе рабочей зоны: Сб. МУ, в. 8 М., 1983 90 с.							
4. Натрий винно-кислый кислый	К = 2,66 Методические указания по измерению концентраций натрия сульфата в воздухе рабочей зоны методом атомно-абсорбционной спектрофотометрии: Сб. МУ, в. 21 М., 1986 - 135с.							

K = 7,48

Натрий винно-кислый Методические указания по измерению концентраций натрия сульфата в

воздухе рабочей зоны методом атомно-абсорбционной спектрофотометрии: Сб. МУ, в. 21. - М., 1986 - 135 с.

Калий-натрий винно-кислый

- 5. Полиметилмочевина
- 6. Трифторметансульфофторид (фторангидрид трифторметан сульфокислоты)
- 7. Хлоргидрат изонипекотиновой кислоты

K = 4,22

Мето́дические указания по измерению концентраций натрия сульфата в воздухе рабочей зоны методом атомно-абсорбционной спектрофотометрии: Сб. МУ, в. 21. - М., 1986. - 135 с.

K = 3.39

Методические указания по гравиметрическому определению пыли в воздуже рабочей зоны и в системах вентиляционных установок: Сб. МУ, в. 1 - 5. - М., 1981. - 235 с.

Методические указания на фотометрическое определение фторорганических соединений: Сб. МУ, в. 1 - 5. - М. 1981. - 187 с.

K = 2

Методические указания на фотометрическое определение диэтиламина в воздуже: Сб. МУ, в. 1 - 5. - М., 1981. - 123 с. Отбор проб на фильтр со скоростью 2 л/мин.